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A mechanical model is presented, in which viscoelastic response is described by the action
of time-dependent latch elements. The model represents viscoelastic changes occurring
through incremental jumps as opposed to continuous motion. This is supported by the
observation that polymeric creep, recovery and stress relaxation can be correlated with
stretched exponential functions, i.e. Weibull and Kohlrausch-Williams-Watts, since (i) the
former is also used in reliability engineering to represent the failure of discrete elements
and (ii) there is evidence of the latter being an approximation to the Eyring potential energy
barrier relationship, which describes motion in terms of molecular jumps.
C© 2005 Springer Science + Business Media, Inc.

For polymeric materials, the ability to model viscoelas-
tic response underpins our understanding of deforma-
tion mechanisms and facilitates solutions to long-term
load-bearing design problems. Mechanical models are
common, the simplest being the Maxwell (spring and
dashpot in series) and Voigt (spring and dashpot in
parallel) models; the former can be used for represent-
ing stress relaxation, the latter for creep and recovery
conditions.

More complex models involve 3 or 4 elements, such
as the Zener and combined Maxwell-Voigt models:
both of these can represent creep, recovery and stress
relaxation [1]. It is said however, that real materials
in general are not describable by models containing a
small number of springs and dashpots, i.e. they often
lack sufficient accuracy for quantitative prediction [2,
3]. This may be attributed to the restricted timescales
that these models can represent. Broad timescales re-
quire models that provide a distribution of retardation
or relaxation times; this can be resolved by representing
creep and recovery with a ‘generalized Voigt model’,
consisting of Voigt elements connected in series, and
stress relaxation by a ‘generalized Maxwell model’, us-
ing Maxwell elements connected in parallel [3]. A more
elegant solution lies with a single model for creep, re-
covery and stress relaxation. This is afforded by the
Zener model, since it can be generalized into a series
of Voigt elements (for broad timescales) and a series
spring (representing instantaneous elastic deformation)
[4].

According to Rosen [3], some authorities object
strongly to mechanical models, since real materials
are not made of springs and dashpots. Nevertheless,
as Rosen suggests, these materials are not made of
equations either, and the visualization of deformation
is facilitated by these models. Unfortunately, improv-

ing quantitative accuracy by using a generalized model
with many elements could increase mathematical com-
plexity to the point where the number of parameters
may be impractically large, and (potentially complex)
methods of approximation are needed [3, 4].

A common factor in these models is that viscoelastic
deformation is considered to vary smoothly, i.e. a ma-
terial undergoing creep, recovery or stress relaxation
does so continuously with time. This letter considers
an alternative approach, in which viscoelastic changes
are suggested to occur through incremental jumps. On
a molecular level, the phenomenon could be envisaged
as segments of molecules jumping between positions
of relative stability. The approach was first evaluated by
the author, when it was found that polymeric creep and
recovery could be accurately represented by equations
based on the Weibull distribution function [5]. Thus for
creep under an applied load, the total strain is:

εctot(t) = εi + εc

[
1 − exp

(
−

(
t

ηc

)βc
)]

(1)

where εi is the initial instantaneous strain from appli-
cation of the load and the εc function represents creep
strain, which is determined by the characteristic life
(ηc) and shape (βc) parameters as a function of load
duration, t. When the load is removed, there may be
some instantaneous (elastic) strain recovery, which is
then followed by time-dependent recovery strain:

εrvis(t) = εr

[
exp

(
−
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ηr

)βr
)]

+ εf (2)

where the εr function, for viscoelastic strain recov-
ery, is determined by parameters synonymous with
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Figure 1 A spring-dashpot latch model to represent time-dependent deformation in polymeric materials: (a) Creep, (b) Recovery, (c) Stress relaxation
at time t, and (d) Stress relaxation at time t + �t, showing an increase in the number of latch elements triggered into their extended positions. In a real
polymeric material, these deformation processes would need to be represented by many latch elements to give a broad distribution of trigger times.

those of Equation 1 over recovery time t, and εf is the
permanent strain from viscous flow. These equations
correlated very well with experimental data from semi-
crystalline polymers, enabling both time-dependent
and time-independent strain to be predicted [5]. Since
the Weibull function is used in reliability engineering,
it was suggested in Ref. [5] that, like the failure of
elements in a system, viscoelastic recovery could be
modelled as a population of time-dependent mechan-
ical latches; each latch would be considered to have
‘failed’ once it had been triggered, thereby making re-
covery proceed by one incremental step.

Fig. 1 extends these principles, to present a general-
ized phenomenological model which depicts creep, re-
covery and stress relaxation in terms of the mechanical
latch approach. The model consists of latches, the trig-
gering time of each latch (l1, l2,. . . ln) being dependent
on the stiffness of the corresponding spring (s1, s2,. . .
sn) and viscosity of the dashpot (d1, d2,. . . dn). Under
creep conditions (Fig. 1a), triggering times would be
reduced as creep load is increased, thereby increasing

the strain rate. In recovery (Fig. 1b) however, these
times would be expected to be greater, since there is no
externally applied load; thus recovery strain rates be-
come lower than those from creep. A proportion of the
latch units, with triggering times that approach infinity
on recovery, could be considered to represent viscous
flow effects. Instantaneous (elastic) deformation within
the material is represented by the large spring, S. The
model is also consistent with stress relaxation condi-
tions (Fig. 1c, d), in that S contracts as the latch units
progressively extend with time. Stress relaxation rates
will clearly be faster for a polymer in which S has high
stiffness.

In addition to the link with failure of elements in a
system, the incremental step argument is supported by
considering the following. The Kohlrausch-Williams-
Watts (KWW) function has been used to represent
time-dependent phenomena, principally for relaxation
in amorphous materials [6]. Although the function orig-
inated from the nineteenth century (Kohlrausch), its
modern usage follows from the work of Williams and
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Figure 2 Analysis of stress relaxation data from Murayama et al. [14] for nylon 6,6 fiber, using Equation 3 (Weibull-based model) and Equation 4
(Eyring-based model). The quality of fit between measured and equation-predicted stress values is indicated by the correlation coefficient, r.

Watts for dielectric decay [7]. The KWW function is
in fact identical in form to that proposed by Weibull
[8], i.e. an empirical ‘stretched exponential’ function,
which leads (for example) to equations comparable
with Equation 1 being used to characterize creep in
amorphous polymers [9–11]. Of importance here is a
link that has been proposed [12] between the KWW
function and the potential energy barrier relationship as
developed by Eyring et al. [13], since the latter relates
the motion of matter to molecular jumps. In Ref. [12],
the KWW function is shown to be an approximation to
the potential energy barrier model by comparing cor-
responding curves plotted with arbitrary values. Fig. 2
takes this further by taking stress relaxation data for a
semi-crystalline polymer (nylon 6,6 fiber) [14] and fit-
ting equations corresponding to (i) the KWW/Weibull
function and (ii) the potential energy barrier model,
using CurveExpert 1.3 software. For (i), the stress re-
laxation is:

σrel(t) = σ0

[
exp

(
−

(
t

ησ

)βσ
)]

+ σf (3)

where the σ0 function represents time-dependent stress
and σf is the final stress as t approaches infinity. Thus
σf is represented by the elastic contribution from S in
Fig. 1d that remains once all contributing latch units
have triggered in response to the stress relaxation con-
ditions. For (ii), the Eyring-based model adapted from

Ref. [12] is used:

σrel(t) = A atanh

[
tanh(B) exp

(
− t

τ

)]
+ σe (4)

where A and B are constants and τ is the relaxation time.
The parameter σe is introduced here as an addition to
the equation from Ref. [12], and is synonymous with
σf in Equation 3.

Fig. 2 indicates good agreement between the two
models and with the experimental data, although the
Weibull-based model shows improved correlation at
longer relaxation times. Using stress relaxation data
from ultra-high modulus polyethylene monofilament
[15], these trends are also indicated in Fig. 3; however,
the broader timescale appears to exacerbate the lim-
itations of the Eyring-based model. It is nevertheless
encouraging that σf and σe have comparable values, as
in Fig. 2.

Also shown in Fig. 3 is the model described by
Wilding and Ward [15] fitted to their own data. Al-
though this model appears to be a poorer fit than those
of Equations 3 and 4, it has theoretical justification:
stress relaxation is described as two thermally activated
processes operating in parallel, each process being a
Maxwell element incorporating an Eyring (instead of
a conventional) dashpot. Thus, like Equation 4, the
Wilding-Ward model is founded on the Eyring poten-
tial energy barrier relationship. From Ref. [12], A =
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Figure 3 Analysis of stress relaxation data (relative to an initial stress value) from Wilding and Ward [15] for ultra-high modulus polyethylene
monofilament, as described for Fig. 2. Also shown is the Wilding-Ward model plotted from Ref. [15].

kT/2v in Equation 4, where k is the Boltzmann con-
stant, T is the absolute temperature and v is the Eyring
activation volume. Using parameter values from Figs 2
and 3, v is 0.67 nm3 and 0.1 nm3 for the nylon 6,6
and polyethylene data respectively. It is encouraging to
note that the magnitude of these values is comparable to
activation volumes generally associated with polymer
deformation, i.e. ∼0.05–1 nm3 [16]. For the polyethy-
lene data in Fig. 3, v is calculated from the assumption
that for A, initial and maximum stress values are equal
(270 MPa); however, if the initial stress was less, this
may explain the lower value (0.1 nm3) compared with
those determined in Ref. [15] from the Wilding-Ward
model (0.162 and 0.456 nm3).

It is evident from Figs 2 and 3, that the applicabil-
ity of models with just one or two Eyring dashpots
(or activation volumes) will tend to be limited to re-
stricted timescales. Thus, as with conventional, gener-
alized spring-dashpot models, to represent accurately
the viscoelastic response over many decades of time
would require an Eyring-based model with numbers of
elements that could increase mathematical complexity
to the point of impracticality. Conversely, the stretched
exponential approach provides excellent correlation
with experimental data, even over broad timescales
[5]. An example of the latter has been applied to the
development of prestressed polymeric matrix compos-
ites using viscoelastically strained nylon 6,6 fiber [17]:
Equation 2 was fitted to fiber recovery strain data taken
over 6 decades of time to ∼1.5 years. Curves extrapo-

lated from Equation 2 have predicted strain values that
are in good agreement with measured strain after ∼4
years of recovery [18]. Neverthless, the stretched expo-
nential approach cannot be entirely satisfactory, since
it has no real theoretical basis.

To summarize, the mechanical latch-based model in
Fig. 1 is presented to suggest that viscoelastic changes
may occur through incremental jumps. The observation
that creep, recovery and stress relaxation in polymeric
materials correlate well with stretched exponential
(KWW/Weibull) functions provides two supportive
arguments. First, the Weibull distribution function is
used in reliability engineering to represent the failure
of (discrete) elements in systems. Second, the Eyring
potential energy barrier relationship describes the
motion of matter in terms of molecular jumps [13].
For stress relaxation, the KWW function (hence the
Weibull model) is considered to be an approximation to
this [12], which is supported by evidence from Figs 2
and 3.
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